Menu
Space exploration
Astronomers Discover Houdini-Like Vanishing Act in Space

Most Accurate Robotic Legs Mimic Human Walking Gait

Spaceflight May Extend the Lifespan of Microscopic Worm

Arctic Warming Linked to Combination of Reduced Sea Ice and Global Atmospheric Warming

World's Fastest Camera Used to Detect Rogue Cancer Cells

Keeping the Flu Away: Synthetic Protein Activates Immune System Within Two Hours

'MRI' of the Sun's Interior Motions Challenges Existing Explanations for Sunspots

Sounds of Northern Lights Are Born Close to Ground

Belching Black Hole Proves a Biggie: First Known 'Middleweight' Black Hole

Technique Spots Disease Using Immune Cell DNA

Pompeii-Style Volcanic Ash Fall Preserved 'Nursery' of Earliest Animals

Cutting Daily Sitting Time to Under Three Hours Might Extend Life by Two Years

Greater Diet-Induced Obesity in Rats Consuming Sugar Solution During the Inactive Period

Rising Carbon Dioxide in Atmosphere Also Speeds Carbon Loss from Forest Soils

Climate Change May Lead to Fewer but More Violent Thunderstorms

New Biofuel Process Dramatically Improves Energy Recovery, and Uses Agricultural Waste

Toward Achieving One Million Times Increase in Computing Efficiency

Hubble Unmasks Ghost Galaxies

New Parasitic Coral Reef Crustacean Named After Late Reggae Performer Bob Marley

The Old Primates' Club: Even Male Monkeys Ride Their Fathers' Coattails to Success

Data Storage of Tomorrow: Ferroelectricity On the Nanoscale

One Smart Egg: Birds Sense Day Length and Change Development

Dark Galaxies of the Early Universe Spotted for the First Time

Not So Happy: King Penguins Stressed by Human Presence

Nanodevice Builds Electricity from Tiny Pieces

Do Dolphins Think Nonlinearly?
Research from the University of Southampton, which examines how dolphins might process their sonar signals, could provide a new system for human-made sonar to detect targets, such as sea mines, in bubbly water.

When hunting prey, dolphins have been observed to blow 'bubble nets' around schools of fish, which force the fish to cluster together, making them easier for the dolphins to pick off. However, such bubble nets would confound the best human-made sonar because the strong scattering by the bubbles generates 'clutter' in the sonar image, which cannot be distinguished from the true target.

Taking a dolphin's sonar and characterising it from an engineering perspective, it is not superior to the best human-made sonar. Therefore, in blowing bubble nets, dolphins are either 'blinding' their echolocation sense when hunting or they have a facility absent in human-made sonar.

The study by Professor Tim Leighton, from the University's Institute of Sound and Vibration Research (ISVR), and colleagues examined whether there is a way by which dolphins might process their sonar signals to distinguish between targets and clutter in bubbly water.

In the study, published in Proceedings of the Royal Society A, Professor Leighton along with Professor Paul White and student Gim Hwa Chua used echolocation pulses of a type that dolphins emit, but processed them using nonlinear mathematics instead of the standard way of processing sonar returns. This Biased Pulse Summation Sonar (BiaPSS) reduced the effect of clutter by relying on the variation in click amplitude, such as that which occurs when a dolphin emits a sequence of clicks.

Professor Leighton says: "We know that dolphins emit sequences of clicks and the amplitude of each click can vary from one to the next, so that not all the clicks are the same loudness. We asked, what if this variation in amplitude was not coincidental, but instead was key to distinguishing fish from bubbles.

"These clicks were shown to identify targets when processed using nonlinear mathematics, raising the question of whether dolphins also benefit from such mathematics. The variation in amplitude of these clicks is the key: it produces changes in the echoes which can identify the target (fish) in the bubble net, where human-made sonar does not work.

"Although this does not conclusively prove that dolphins do use such nonlinear processing, it demonstrates that humans can detect and classify targets in bubbly water using dolphin-like sonar pulses, raising intriguing possibilities for dolphin sonar when they make bubble nets."

BiaPSS was shown to be effective in distinguishing targets from the clutter generated by bubbles in the 'field of view' of the sonar. One such target is a sea mine, which is relatively simple to purchase, and inexpensive (around $1,000 each) compared to the financial damage (let alone injury and loss of life) that they cause (for example $96 million repair to USS Samuel B Roberts; $24 million repair to USS Princeton; $3.6 million to USS Tripoli).

Professor Leighton adds: "There are still questions to answer. For one thing, dolphins would have to use a frequency, when they enter bubbly water, which is sufficiently low that they can hear up to frequencies twice as high in pitch. Until measurements are taken of wild dolphin sonar as they hunt in bubbly water, these questions will remain unanswered. What we have shown is that it is not impossible to distinguish targets in bubbly water using the same sort of pulses that dolphins use."

The authors previously proposed a form of sonar signal (TWIPS: Twin Inverted Pulse Sonar) that could work in bubble clouds, consisting of pairs of pulses that were identical except that one was inverted with respect to the other, that could detect targets in bubbly water if the signal processing were to make use of nonlinear mathematics. However, while these TWIPS pulses were successful, there was no conclusive evidence that the types of pulses devised for that study are used by any type of dolphin.

Для печати
Mechanical Engineers Develop an 'Intelligent Co-Pilot' for Cars

Lab-Engineered Muscle Implants Restore Function in Animals

Engineering Technology Reveals Eating Habits of Giant Dinosaurs

Protein Found in Spider Venom Could Treat Muscular Dystrophy

Force of Nature: Defining the Mechanical Mechanisms in Living Cells

Neurons Derived from Cord Blood Cells May Represent New Therapeutic Option

Coastal Populations Are Healthier Than Those Inland, UK Study Finds

Largest Ancient Dam Built by Maya in Central America

World Record: Lightest Material in the World Produced

Infants' Recognition of Speech More Sophisticated Than Previously Known

In Visual Searches, Computer Is No Match for the Human Brain

Musical Glove Improves Sensation, Mobility for People With Spinal Cord Injury

New Evidence Links Immune Irregularities to Autism, Mouse Study Suggests


Menu
The More Gray Matter You Have, the More Altruistic You Are

Hubble Discovers a Fifth Moon Orbiting Pluto

One Step Closer to New Kind of Thermoelectric 'Heat Engine'

Native American Populations Descend from Three Key Migrations, Scientists Say

Trigger for Past Rapid Sea Level Rise Discovered

Skulls Shed New Light On the Evolution of the Cat

Transforming Cancer Into a Manageable Illness With Multi-Drug Approach

The Eyes Don't Have It: New Research Into Lying and Eye Movements

Giant Fossil Turtle from Colombia Round Like Car Tire

Fossil Egg Links Dinosaurs to Modern Birds

Viruses May Be Causing Coral Bleaching and Decline Around the World

Peering Into the Heart of a Supernova: How to Detect a Rapidly Spinning Stellar Core

Physicists Invent 'Spintronic' LED

Newly Isolated 'Beige Fat' Cells Could Help Fight Obesity

Study: Wolverines Need Refrigerators

Solar System Ice: Source of Earth's Water

Attacking Biofilms That Cause Chronic Infections

Discovery of Chemical That Affects Biological Clock Offers New Way to Treat Diabetes

Vaccines Backfire: Veterinary Vaccines Found to Combine Into New Infectious Viruses

Antarctica at Risk from Human Activities

Large, Medically Important Class of Proteins Starts to Yield Its Secrets

Early Human Ancestor, Australopithecus Sediba, Fossils Discovered in Rock

First Ever Videos of Snow Leopard Mother and Cubs in Dens Recorded in Mongolia

Messy Experiment Cleans Up Cornstarch and Water Mystery

Controlling Your Computer With Your Eyes