Menu
Space exploration
Astronomers Discover Houdini-Like Vanishing Act in Space

Most Accurate Robotic Legs Mimic Human Walking Gait

Spaceflight May Extend the Lifespan of Microscopic Worm

Arctic Warming Linked to Combination of Reduced Sea Ice and Global Atmospheric Warming

World's Fastest Camera Used to Detect Rogue Cancer Cells

Keeping the Flu Away: Synthetic Protein Activates Immune System Within Two Hours

'MRI' of the Sun's Interior Motions Challenges Existing Explanations for Sunspots

Sounds of Northern Lights Are Born Close to Ground

Belching Black Hole Proves a Biggie: First Known 'Middleweight' Black Hole

Technique Spots Disease Using Immune Cell DNA

Pompeii-Style Volcanic Ash Fall Preserved 'Nursery' of Earliest Animals

Cutting Daily Sitting Time to Under Three Hours Might Extend Life by Two Years

Greater Diet-Induced Obesity in Rats Consuming Sugar Solution During the Inactive Period

Rising Carbon Dioxide in Atmosphere Also Speeds Carbon Loss from Forest Soils

Climate Change May Lead to Fewer but More Violent Thunderstorms

New Biofuel Process Dramatically Improves Energy Recovery, and Uses Agricultural Waste

Toward Achieving One Million Times Increase in Computing Efficiency

Hubble Unmasks Ghost Galaxies

New Parasitic Coral Reef Crustacean Named After Late Reggae Performer Bob Marley

The Old Primates' Club: Even Male Monkeys Ride Their Fathers' Coattails to Success

Data Storage of Tomorrow: Ferroelectricity On the Nanoscale

One Smart Egg: Birds Sense Day Length and Change Development

Dark Galaxies of the Early Universe Spotted for the First Time

Not So Happy: King Penguins Stressed by Human Presence

Nanodevice Builds Electricity from Tiny Pieces

One Step Closer to New Kind of Thermoelectric 'Heat Engine'
Researchers who are studying a new magnetic effect that converts heat to electricity have discovered how to amplify it a thousand times over -- a first step in making the technology more practical.

In the so-called spin Seebeck effect, the spin of electrons creates a current in magnetic materials, which is detected as a voltage in an adjacent metal. Ohio State University researchers have figured out how to create a similar effect in a non-magnetic semiconductor while producing more electrical power.

They've named the amplified effect the "giant spin-Seebeck" effect, and the university will license patent-pending variations of the technology.

The resulting voltages are admittedly tiny, but in this week's issue of the journal Nature, the researchers report boosting the amount of voltage produced per degree of temperature change inside the semiconductor from a few microvolts to a few millivolts -- a 1,000-fold increase in voltage, producing a 1-million-fold increase in power.

Joseph Heremans, Ohio Eminent Scholar in Nanotechnology, said that his team's ultimate goal is a low-cost and efficient solid-state engine that coverts heat to electricity. These engines would have no moving parts, would not wear out, and would be infinitely reliable, he added.

"It's really a new generation of heat engine," said Heremans, professor of mechanical engineering and professor of physics at Ohio State. "In the 1700s we had steam engines, in the 1800s we had gas engines, in the 1900s we had the first thermoelectric materials, and now we're doing the same thing with magnetics."

This research could enable electronic devices that recycle some of their own waste heat into electricity. In a computer, it could enable heat-powered computation, or, inversely, it could provide cooling.

Researchers around the world are working to develop electronics that utilize the spin of electrons to read and write data. So-called "spintronics" are desirable because in principle they could store more data in less space, process data faster, and consume less power. And the spin-Seebeck effect takes the notion of spintronics a step further, by using heat to induce a flow of spin "information," called a "spin current."

Great progress has been made in understanding how the spin-Seebeck effect works, but many details are still a mystery. Though researchers around the world have been able to reproduce the spin-Seebeck effect with some success since it was discovered at Tohoku University in 2008, a unified theory is lacking. And the same holds true for the giant spin-Seebeck effect, though the Ohio State researchers have several suggestions as to what's going on.

People may be familiar with the concept of light being made of particles called photons, Heremans said. Heat, too, can be thought of the same way, and scientists have a similar-sounding name for heat particles: phonons.

The researchers think that they were able to induce a powerful stream of phonons inside the semiconductor. The phonons then smashed into the electrons and knocked them forward, while the atoms in the semiconductor made the electrons spin as they streamed through the material -- like a bullet spinning in a rifle barrel.

Roberto Myers, assistant professor of materials science and engineering, said that the key to making the experiment work was the choice of materials.

The spin-Seebeck effect had previously only been seen in magnetic semiconductors and metals, but they looked to non-magnetic semiconductors instead, where there were more materials to choose from. They settled on indium antimonide, doped it with other elements, and then created a sample of the material about the size of stick of Trident gum.

Since the material was non-magnetic, they needed to create a magnetic field around it and lower the temperature to polarize the electrons.

"Those are the drawbacks -- we had to do it at a low temperature, and with a high magnetic field," Myers said. "Right now, it works between 2 and 20 Kelvin, which is about the temperature of liquid helium, and with an external magnetic field of 3 Tesla, which is about the same strength as a medical MRI."

The temperature range corresponds to -456 to -423 degrees Fahrenheit.

Still, when they heated one side of the material one degree, they detected a voltage of 8 millivolts (thousandths of a volt) on the other side. That's three orders of magnitude bigger than the 5 microvolts (millionths of a volt) ever produced by researchers using the standard spin-Seebeck effect.

Heremans and his team are exploring other materials -- magnetic and otherwise -- to push the effect further.

Christopher Jaworski, a graduate student in mechanical engineering, performed this experiment as part of his doctoral thesis. He prepared the material with the help of the laboratory of coauthor Ezekiel Johnston-Halperin, assistant professor of physics.

This research was funded by the National Science Foundation and the U.S. Department of Energy.

Для печати
Mechanical Engineers Develop an 'Intelligent Co-Pilot' for Cars

Lab-Engineered Muscle Implants Restore Function in Animals

Engineering Technology Reveals Eating Habits of Giant Dinosaurs

Protein Found in Spider Venom Could Treat Muscular Dystrophy

Force of Nature: Defining the Mechanical Mechanisms in Living Cells

Neurons Derived from Cord Blood Cells May Represent New Therapeutic Option

Coastal Populations Are Healthier Than Those Inland, UK Study Finds

Largest Ancient Dam Built by Maya in Central America

World Record: Lightest Material in the World Produced

Infants' Recognition of Speech More Sophisticated Than Previously Known

In Visual Searches, Computer Is No Match for the Human Brain

Musical Glove Improves Sensation, Mobility for People With Spinal Cord Injury

New Evidence Links Immune Irregularities to Autism, Mouse Study Suggests


Menu
The More Gray Matter You Have, the More Altruistic You Are

Hubble Discovers a Fifth Moon Orbiting Pluto

One Step Closer to New Kind of Thermoelectric 'Heat Engine'

Native American Populations Descend from Three Key Migrations, Scientists Say

Trigger for Past Rapid Sea Level Rise Discovered

Skulls Shed New Light On the Evolution of the Cat

Transforming Cancer Into a Manageable Illness With Multi-Drug Approach

The Eyes Don't Have It: New Research Into Lying and Eye Movements

Giant Fossil Turtle from Colombia Round Like Car Tire

Fossil Egg Links Dinosaurs to Modern Birds

Viruses May Be Causing Coral Bleaching and Decline Around the World

Peering Into the Heart of a Supernova: How to Detect a Rapidly Spinning Stellar Core

Physicists Invent 'Spintronic' LED

Newly Isolated 'Beige Fat' Cells Could Help Fight Obesity

Study: Wolverines Need Refrigerators

Solar System Ice: Source of Earth's Water

Attacking Biofilms That Cause Chronic Infections

Discovery of Chemical That Affects Biological Clock Offers New Way to Treat Diabetes

Vaccines Backfire: Veterinary Vaccines Found to Combine Into New Infectious Viruses

Antarctica at Risk from Human Activities

Large, Medically Important Class of Proteins Starts to Yield Its Secrets

Early Human Ancestor, Australopithecus Sediba, Fossils Discovered in Rock

First Ever Videos of Snow Leopard Mother and Cubs in Dens Recorded in Mongolia

Messy Experiment Cleans Up Cornstarch and Water Mystery

Controlling Your Computer With Your Eyes