Menu
Space exploration
Astronomers Discover Houdini-Like Vanishing Act in Space

Most Accurate Robotic Legs Mimic Human Walking Gait

Spaceflight May Extend the Lifespan of Microscopic Worm

Arctic Warming Linked to Combination of Reduced Sea Ice and Global Atmospheric Warming

World's Fastest Camera Used to Detect Rogue Cancer Cells

Keeping the Flu Away: Synthetic Protein Activates Immune System Within Two Hours

'MRI' of the Sun's Interior Motions Challenges Existing Explanations for Sunspots

Sounds of Northern Lights Are Born Close to Ground

Belching Black Hole Proves a Biggie: First Known 'Middleweight' Black Hole

Technique Spots Disease Using Immune Cell DNA

Pompeii-Style Volcanic Ash Fall Preserved 'Nursery' of Earliest Animals

Cutting Daily Sitting Time to Under Three Hours Might Extend Life by Two Years

Greater Diet-Induced Obesity in Rats Consuming Sugar Solution During the Inactive Period

Rising Carbon Dioxide in Atmosphere Also Speeds Carbon Loss from Forest Soils

Climate Change May Lead to Fewer but More Violent Thunderstorms

New Biofuel Process Dramatically Improves Energy Recovery, and Uses Agricultural Waste

Toward Achieving One Million Times Increase in Computing Efficiency

Hubble Unmasks Ghost Galaxies

New Parasitic Coral Reef Crustacean Named After Late Reggae Performer Bob Marley

The Old Primates' Club: Even Male Monkeys Ride Their Fathers' Coattails to Success

Data Storage of Tomorrow: Ferroelectricity On the Nanoscale

One Smart Egg: Birds Sense Day Length and Change Development

Dark Galaxies of the Early Universe Spotted for the First Time

Not So Happy: King Penguins Stressed by Human Presence

Nanodevice Builds Electricity from Tiny Pieces

Nanodevice Builds Electricity from Tiny Pieces
A team of scientists at the National Physical Laboratory (NPL) and University of Cambridge has made a significant advance in using nano-devices to create accurate electrical currents. Electrical current is composed of billions and billions of tiny particles called electrons. They have developed an electron pump -- a nano-device -- which picks these electrons up one at a time and moves them across a barrier, creating a very well-defined electrical current.

The device drives electrical current by manipulating individual electrons, one-by-one at very high speed. This technique could replace the traditional definition of electrical current, the ampere, which relies on measurements of mechanical forces on current-carrying wires.

The key breakthrough came when scientists experimented with the exact shape of the voltage pulses that control the trapping and ejection of electrons. By changing the voltage slowly while trapping electrons, and then much more rapidly when ejecting them, it was possible to massively speed up the overall rate of pumping without compromising the accuracy.

By employing this technique, the team were able to pump almost a billion electrons per second, 300 times faster than the previous record for an accurate electron pump set at the National Institute of Standards and Technology (NIST) in the USA in 1996.

Although the resulting current of 150 picoamperes is small (ten billion times smaller than the current used when boiling a kettle), the team were able to measure the current with an accuracy of one part-per-million, confirming that the electron pump was accurate at this level. This result is a milestone in the precise, fast, manipulation of single electrons and an important step towards a re-definition of the unit ampere.

As reported in Nature Communications, the team used a nano-scale semiconductor device called a 'quantum dot' to pump electrons through a circuit. The quantum dot is a tiny electrostatic trap less than 0.0001 mm wide. The shape of the quantum dot is controlled by voltages applied to nearby electrodes.

The dot can be filled with electrons and then raised in energy. By a process known as 'back-tunneling', all but one of the electrons fall out of the quantum dot back into the source lead. Ideally, just one electron remains trapped in the dot, which is ejected into the output lead by tilting the trap. When this is repeated rapidly this gives a current determined solely by the repetition rate and the charge on each electron -- a universal constant of nature and the same for all electrons.

The research makes significant steps towards redefining the ampere by developing the application of an electron pump which improves accuracy rates in primary electrical measurement.

Masaya Kataoka of the Quantum Detection Group at NPL explains: "Our device is like a water pump in that it produces a flow by a cyclical action. The tricky part is making sure that exactly the same number of electronic charge is transported in each cycle.

The way that the electrons in our device behave is quite similar to water; if you try and scoop up a fixed volume of water, say in a cup or spoon, you have to move slowly otherwise you'll spill some. This is exactly what used to happen to our electrons if we went too fast."

Stephen Giblin also part of the Quantum Detection Group, added: "For the last few years, we have worked on optimising the design of our device, but we made a huge leap forward when we fine-tuned the timing sequence. We've basically smashed the record for the largest accurate single-electron current by a factor of 300.

Although moving electrons one at a time is not new, we can do it much faster, and with very high reliability -- a billion electrons per second, with an accuracy of less than one error in a million operations.

Using mechanical forces to define the ampere has made a lot of sense for the last 60 or so years, but now that we have the nanotechnology to control single electrons we can move on.

The technology might seem more complicated, but actually a quantum system of measurement is more elegant, because you are basing your system on fundamental constants of nature, rather than things which we know aren't really constant, like the mass of the standard kilogram."

Для печати
Mechanical Engineers Develop an 'Intelligent Co-Pilot' for Cars

Lab-Engineered Muscle Implants Restore Function in Animals

Engineering Technology Reveals Eating Habits of Giant Dinosaurs

Protein Found in Spider Venom Could Treat Muscular Dystrophy

Force of Nature: Defining the Mechanical Mechanisms in Living Cells

Neurons Derived from Cord Blood Cells May Represent New Therapeutic Option

Coastal Populations Are Healthier Than Those Inland, UK Study Finds

Largest Ancient Dam Built by Maya in Central America

World Record: Lightest Material in the World Produced

Infants' Recognition of Speech More Sophisticated Than Previously Known

In Visual Searches, Computer Is No Match for the Human Brain

Musical Glove Improves Sensation, Mobility for People With Spinal Cord Injury

New Evidence Links Immune Irregularities to Autism, Mouse Study Suggests


Menu
The More Gray Matter You Have, the More Altruistic You Are

Hubble Discovers a Fifth Moon Orbiting Pluto

One Step Closer to New Kind of Thermoelectric 'Heat Engine'

Native American Populations Descend from Three Key Migrations, Scientists Say

Trigger for Past Rapid Sea Level Rise Discovered

Skulls Shed New Light On the Evolution of the Cat

Transforming Cancer Into a Manageable Illness With Multi-Drug Approach

The Eyes Don't Have It: New Research Into Lying and Eye Movements

Giant Fossil Turtle from Colombia Round Like Car Tire

Fossil Egg Links Dinosaurs to Modern Birds

Viruses May Be Causing Coral Bleaching and Decline Around the World

Peering Into the Heart of a Supernova: How to Detect a Rapidly Spinning Stellar Core

Physicists Invent 'Spintronic' LED

Newly Isolated 'Beige Fat' Cells Could Help Fight Obesity

Study: Wolverines Need Refrigerators

Solar System Ice: Source of Earth's Water

Attacking Biofilms That Cause Chronic Infections

Discovery of Chemical That Affects Biological Clock Offers New Way to Treat Diabetes

Vaccines Backfire: Veterinary Vaccines Found to Combine Into New Infectious Viruses

Antarctica at Risk from Human Activities

Large, Medically Important Class of Proteins Starts to Yield Its Secrets

Early Human Ancestor, Australopithecus Sediba, Fossils Discovered in Rock

First Ever Videos of Snow Leopard Mother and Cubs in Dens Recorded in Mongolia

Messy Experiment Cleans Up Cornstarch and Water Mystery

Controlling Your Computer With Your Eyes